Communication

Clean Inversion of Configuration in the

 Pd-Catalyzed Cross-Coupling of 2-Bromo-1,3-dienesXingzhong Zeng, Qian Hu, Mingxing Qian, and Ei-ichi Negishi

J. Am. Chem. Soc., 2003, 125 (45), 13636-13637• DOI: 10.1021/ja0304392 • Publication Date (Web): 17 October 2003

Downloaded from http://pubs.acs.org on March 30, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 13 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Clean Inversion of Configuration in the Pd-Catalyzed Cross-Coupling of 2-Bromo-1,3-dienes

Xingzhong Zeng, Qian Hu, Mingxing Qian, and Ei-ichi Negishi*
Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084

Received July 21, 2003; E-mail: negishi@purdue.edu

Aside from examples of unwanted, partial stereoisomerization, the Pd-catalyzed alkenylation with alkenyl halides has been known to proceed with retention of configuration. ${ }^{1}$ We now report some unprecedented examples exhibiting $\geq 97-98 \%$ inversion at halogenbearing $\mathrm{C}_{\mathrm{sp}^{2}}$ centers that can be represented by eq 1 in Scheme 1 . Besides being novel, the reaction promises to provide an attractive and useful route to conjugated dienes present in a number of complex natural products, such as $(-)$-callystatin $\mathrm{A},{ }^{2}(-)$-leptomycin B, ${ }^{3}$ and (+)-ratjadone. ${ }^{4}$

In a project directed toward natural products synthesis, we recently ran the Pd-catalyzed alkenylation-methylation of 1,1-dibromo-1-alkenes $\mathbf{1 a}$ and $\mathbf{1 b}^{1 \mathrm{~b}}$ with $(E)-\mathrm{BrZnCH}=\mathrm{CHC} \equiv \mathrm{CSiMe}_{3}{ }^{5}$ and then with either MeZnBr or $\mathrm{Me}_{2} \mathrm{Zn}^{6}$ in the presence of a Pd phosphine catalyst in one pot without isolation of $\mathbf{2 a}$ or $\mathbf{2 b}$. Under these conditions, clean and highly stereoselective disubstitution reactions took place in excellent yields. To our surprise, detailed analysis of the both crudely isolated product mixtures and purified products by NMR spectroscopy including NOE measurements has established that the essentially single stereoisomer formed is the unexpected ($3 E, 5 Z$)-diene $\mathbf{3 a}$ or $\mathbf{3 b}$ rather than the expected $(3 E, 5 E)$ isomer (eqs 2 and 3, Scheme 1). Very high stereoselectivities of $\geq 97-98 \%$ have been observed by using $\mathrm{Cl}_{2} \mathrm{Pd}($ DPEphos $)$ or $\mathrm{Cl}_{2}-$ $\mathrm{Pd}(\mathrm{dppf})$, while the use of $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{TFP})_{2}$ or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ has led to a slightly lower stereoselectivity level of about 95% (eq 3, Scheme 1). ${ }^{7}$

The reaction of $\mathbf{1 a}$ and $\mathbf{1 b}$ with 1.5 mol equiv of $\mathrm{BrZnCH}=$ $\mathrm{CHC} \equiv \mathrm{CSiMe}_{3}$ in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ produced in high yields $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively, that were $\geq 98 \% 3 E, 5 Z$ (eq 1, Scheme 1) in accordance with the well-documented high transselectivity in Pd-catalyzed monosubstitution of 1,1-dihalo-1-alkenes with alkenylmetals containing $\mathrm{Zn},{ }^{8 \mathrm{a}-\mathrm{c}} \mathrm{B},{ }^{8 d, e} \mathrm{Sn},{ }^{8 f}$ and $\mathrm{Zr},{ }^{8 \mathrm{bb}}$ Consequently, the observed stereoinversion must occur in the second step for the conversion of $\mathbf{2}$ into $\mathbf{3}$. To further probe the nature of this unprecedentedly clean and virtually full stereoinversion in the Pdcatalyzed cross-coupling of alkenyl halides, $\mathbf{2 a} \mathbf{- 2 m}$, prepared as stereoisomerically $\geq 98 \%$ pure compounds in the presence of 5 mol \% of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ according to eq 2 in Scheme 1, were further substituted with organozinc derivatives containing $\mathrm{Me}, \mathrm{Et}, n-\mathrm{Bu}$, $\mathrm{Ph}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}$, and $\mathrm{HC} \equiv \mathrm{C}$ in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Cl}_{2} \mathrm{Pd}-$ (DPEphos) in THF. The experimental results summarized in Table 1 indicate the following.

First, as long as (a) alkyl aldehydes are used as precursors to 1,1-dibromo-1-alkenes (1) and (b) its cross-coupling partners are (E) $-\beta$-monosubstituted alkenylzinc derivatives, the stereoinversion in the second substitution occurs predictably and in high stereoselectivity (entries $1-14$). Stereoinversion in all of these cases is strictly confined to the trisubstituted alkene moiety, and the E geometry of the disubstituted alkenyl group remains intact. Irrespective of mechanistic details, this novel tandem disubstitution

Scheme 1

product	PdL_{n}	yield, \%	$\mathrm{Z}, E \%$
2a	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$70(90 \% \mathrm{GLC})$	≥ 98
2b	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	91	≥ 98

2b $\quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad 9$
≥ 98 $\operatorname{NOE}(10 \%)$

${ }^{\text {a }}$ In the stepwise process either	product	PdL_{n}	yield, \%	Z.E \%
one or two different catalysts	3a	$\mathrm{Cl}_{2} \mathrm{Pd}$ (DPEphos)	76	≥ 97
ere used.	3b	$\mathrm{Cl}_{2} \mathrm{Pd}($ DPEphos)	91	≥ 97
was not isolated. The results shown	3b	$\mathrm{Cl}_{2} \mathrm{Pd}$ (dppf)	85	≥ 97
below 3a or 3b were obtained via	3b	$\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{TFP})_{2}$	87	95
one-pot process.	3b	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	90	95

should offer an efficient and selective route to various complex natural products, such as those mentioned earlier.

Second, these results clearly indicate that the class and structural details of the R^{5} group introduced as $R^{5} \mathrm{ZnX}$, where $\mathrm{X}=\mathrm{R}^{5}$ or Br , have little or nothing to do with the observed stereoinversion. These results strongly suggest that the observed stereoinversion is a phenomenon pertaining only to the putative dienylpalladium intermediates generated via oxidative addition.
The observed stereoinversion has to do primarily with relative thermodynamic stabilities of various possible alkenylidenesubstituted π-allylpalladium derivatives ($\mathbf{4}$ and $\mathbf{5}$, Scheme 2). ${ }^{9}$ It can be reasoned on steric ground that the trans relationship ${ }^{10}$ between R^{1} and Pd would be thermodynamically more favorable than the starting cis relationship. In this context, however, it is to be noted that the widely accepted, fully orbital interaction controlled $\pi-\sigma-\pi$ rearrangement mechanism for stereoinversion of ordinary allylpalladium derivatives may not operate in the observed stereoinversion, as it would require double $E-Z$ stereoinversions. ${ }^{10}$ Thus, interconversion between $\mathbf{4}$ and $\mathbf{5}$ must involve an as yet unclear nonconcerted transformation.

For both exploring the synthetic scope and further probing mechanistic details, substitution pattern of the alkenyl groups introduced as alkenylzinc derivatives was varied, while employing the same R^{1} and R^{5}, i.e., $(S)-\mathrm{TBSOCH}_{2}(\mathrm{Me}) \mathrm{CH}$ and Me , respec-

Table 1. Reaction of (Z)-2-Bromo-1,3-dienes with Organozinc Derivatives in the Presence of $5 \mathrm{~mol} \%$ of $\mathrm{Cl}_{2} \mathrm{Pd}($ DPEphos $)$

entry	$2^{\text {a }}$	$\mathrm{R}^{5} \mathrm{ZnX}$	3	yield, $\%^{b}$	$Z, E, \%^{c}$
1	2a	$\mathrm{Me}_{2} \mathrm{Zn}$	3a	90	$\geq 97{ }^{\text {d }}$
2	2a	$\mathrm{Me}_{2} \mathrm{Zn}$	3a	93	≥ 99
3	2b	MeZnBr	3b	95	≥ 98
4	2a	Et ZnBr	3c	93	≥ 98
5	2a	$n-\mathrm{BuZnBr}$	3d	91	≥ 98
6	2a	PhZnBr	3 e	92	$\geq 98(E, E)$
7	2a	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHZnBr}$	3 f	96	≥ 98
8	2a	$\mathrm{HC} \equiv \mathrm{CZnBr}$	3g	96	$\geq 98(E, E)$
9	2c	MeZnBr	3h	85	≥ 98
10	2d	MeZnBr	3 i	70	≥ 98
11	2d	EtZnBr	3j	95	≥ 98
12	2e	MeZnBr	3k	84	≥ 98
13	2 f	$\mathrm{Me}_{2} \mathrm{Zn}$	31	88	≥ 97
14	2g	$\mathrm{Me}_{2} \mathrm{Zn}$	3 m	87	≥ 98
15	2h	$\mathrm{Me}_{2} \mathrm{Zn}$	3n	72	≥ 97 (Z)
16	2 i	$\mathrm{Me}_{2} \mathrm{Zn}$	30	92	$\geq 98(Z, Z)$
17	2j	$\mathrm{Me}_{2} \mathrm{Zn}$	3p	90	≥ 98
18	2k	MeZnBr	3q	92	50^{e}
19	21	$\mathrm{Me}_{2} \mathrm{Zn}$	3r	61	$\leq 3^{f}$
20	2m	$\mathrm{Me}_{2} \mathrm{Zn}$	3 S	95	$\leq 1{ }^{g}$
$\begin{aligned} & \text { TBSO } \\ & \text { 2c } \end{aligned}$					$\equiv \mathrm{SiM}$
TBSO 2i			Et		$\overline{=} \mathrm{SiMe}_{3}$

${ }^{a}$ Fully identified as $\geq 98 \% ~ Z, E$ isomer. ${ }^{b}$ Isolated yield. ${ }^{c}$ Percentage of the Z, E isomer unless otherwise indicated in parentheses. ${ }^{d} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was used as a catalyst. ${ }^{e} Z, E / E, E=50 / 50 .{ }^{f} E, Z, E / E, E, E \leq 3 / 97 .{ }^{g} Z, E / E, E \leq$ 1/99.

Scheme 2

tively (entries $1,2,9,10,15-17$). All alkenyl groups were introduced in good yields in $\geq 98 \%$ trans-selectivity to produce the corresponding 2. Their subsequent reaction with $\mathrm{Me}_{2} \mathrm{Zn}$ or MeZnBr in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{DPEphos})$ proceeded with clean stereoinversion ($\geq 97-98 \%$) in high yields. Particularly noteworthy and puzzling is the fact that stereoisomerization was confined to the Br-bearing $\mathrm{C}=\mathrm{C}$ bond even in the case in which (Z)-1-hexenylzinc bromide was used, and yet, it is definitely not a phenomenon observable with any types of bromoalkenes. Thus, the corresponding reaction of $\mathbf{6}$ showed no sign of stereoinversion. Furthermore, our recent studies have shown that the corresponding reactions of α-bromostyrenes 7 underwent stereoisomerization only to the extent of $<5 \%,{ }^{11}$ while those of 2-bromo-1-en-3-ynes $\mathbf{8}$ were accompanied by significant but partial stereoisomerization. ${ }^{1 \mathrm{~b}}$ It is therefore clear that the observed clean and essentially full stereoinversion is induced by the presence of the $\mathrm{C}=\mathrm{C}$ bond that is in conjugation with the Br -bearing $\mathrm{C}=\mathrm{C}$ bond and allylic to Br .

Although electronic effects of R^{5} were insignificant (entries 6-8), those of R^{1} were of crucial importance. Thus, alkenyl and alkynyl ${ }^{12}$ groups as R^{1} can totally inhibit stereoisomerization (entries 19 and 20), while Ph as R^{1} led to partial stereoinversion (entry 18). These results may tentatively be attributed to chelation shown in 9 .

In summary, the Pd-catalyzed cross-coupling reaction of 2-bromo-1,3-dienes derived from alkyl aldehydes, especially with $\mathrm{Cl}_{2} \mathrm{Pd}$ (DPEphos) as a catalyst, proceeds with clean stereoinversion of the Br-bearing $\mathrm{C}=\mathrm{C}$ bond to produce in high yields and in high stereoselectivity ($\geq 97-98 \%$) conjugated Z, E dienes of potentially high utility in the synthesis of complex natural products. The observed stereoinversion cannot be readily accommodated by the widely accepted $\pi-\sigma-\pi$ rearrangement mechanism for isomerization of ordinary allylpalladium derivatives.

Acknowledgment. We thank NSF (CHE-0309613), NIH (GM 36792), and Purdue University for support of this research. Stimuli provided by related investigations with Drs. Z. Tan and J. Shi are acknowledged.

Supporting Information Available: Experimental procedures, spectroscopic data, and spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) For a recent extensive survey, see: Negishi, E., Ed. Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-Interscience: New York, 2002; Part III. (b) For recent examples of undesirable partial $E-Z$ isomerization, see Shi, J.; Zeng, X.; Negishi, E. Org. Lett. 2003, 5, 1825.
(2) (a) Kobayashi, M.; Higuchi, K.; Murakami, N.; Tajima, H.; Aoki, S. Tetrahedron Lett. 1997, 38, 2859. (b) Enders, D.; Vicario, J. L.; Job, A.; Wolberg, M.; Müller, M. Chem. Eur. J. 2002, 8, 4272.
(3) (a) Hamamoto, T.; Gunji, S.; Tsuji, H.; Beppu, T. J. Antibiot. 1983, 36, 639. (b) Kobayashi, M.; Wang, W.; Tsutsui, Y.; Sugimoto, M.; Murakami, N. Tetrahedron Lett. 1998, 39, 8291.
(4) (a) Schummer, D.; Gerth, K.; Reichenbach, H.; Höfle, G. Liebigs Ann. 1995, 685. (b) Williams, D. R.; Ihle, D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383.
(5) (a) Negishi, E.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett. 2003, 5, 1597. (b) Zeng, F.; Negishi, E. Org. Lett. 2001, 3, 3039. (c) Zeng, F.; Negishi, E. Org. Lett. 2002, 4, 703.
(6) Comparable results were obtained with $\mathrm{Me}_{2} \mathrm{Zn}$ or MeZnBr derived from either MeLi or MeMgBr .
(7) All ligands used in this study are commercially available. DPEphos $=$ bis(2-diphenylphosphinophenyl) ether. TFP = tris(2-furyl)phosphine.
(8) (a) Minato, A.; Suzuki, K.; Tamao, K. J. Am. Chem. Soc. 1987, 109, 1257. (b) Xu, C.; Negishi, E. Tetrahedron Lett. 1999, 40, 431. (c) Ogasawara, M.; Ikeda, H.; Hayashi, T. Angew. Chem., Int. Ed. 2000, 39, 1042. (d) Roush, W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. 1990, 31, 6509. (e) Roush, W. R.; Koyama, K.; Curtin, M. L.; Moriarty, K. J. J. Am. Chem. Soc. 1996, 118, 7502. (f) Shen, W.; Wang, L. J. Org. Chem. 1999, 64, 8873.
(9) For related Pd-catalyzed reaction of 2,3-butadienyl electrophiles, see: Djahanbini, D.; Cazes, B.; Gore, J. Tetrahedron Lett. 1984, 25, 203; Tetrahedron 1984, 40, 3645; Tetrahedron 1987, 43, 3441. Possible intermediacy of 4 has been suggested in a different context for the Pdcatalyzed allylation producing allenes. ${ }^{8 c}$
(10) See, for example, Acemoglu, L.; Williams, J. M. J. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; Chapter V.2.1.2, p 1689. With ordinary allyl derivatives, one each of $E-Z$ and $R-S$ inversions have been observed.
(11) Shi, J.; Negishi, E. J. Organomet. Chem. 2003, in press.
(12) Retention of configuration was reported for the Pd-catalyzed reaction of (Z)-1-iodo-1-en-3-ynes with alkynylzinc chlorides: Stracker, E. C.; Zweifel, G. Tetrahedron Lett. 1991, 32, 3329.
JA0304392

